Important Notice:

The answer paper Must be submitted before 01 May 2021 at 2:00pm.

♠ The answer paper MUST BE sent to the CU Blackboard.

★ The answer paper Must include your name and student ID.

Answer ALL Questions

1. (15 points)

Let X be a normed space and let x_0 be a non-zero vector in X.

- (a) Show that there is an element $f \in X^*$ such that $f(x_0) = 1$.
- (b) Show that there is a non-identity bounded linear operator T from X to itself such that $Tx_0 = x_0$ and ||T|| = 1.

2. (15 points)

Let $1 \le p < \infty$. Let $X := \{x \in \ell_p : \sum_{n=1}^{\infty} |nx(n)|^p < \infty\}$. Define a linear operator $T: X \to \ell_p$ by

Tx(n) := nx(n) for $x \in X$ and n = 1, 2, ...

- (a) Is T a bounded operator? (Explain !)
- (b) Is T an isomorphism from X onto ℓ_p ?

*** See Next Page ***

3. (15 points)

Let H be a complex Hilbert space. Let (x_n) be a sequence in H. We say that (x_n) weakly converges to an element x in H if $\lim_n f(x_n) = f(x)$ for all $f \in H^*$. In this case, we call x a weak limit of the sequence (x_n) .

- (a) Show that if a sequence (x_n) is weakly convergent, then its weak limit is unique.
- (b) Show that a sequence (x_n) converges weakly to an element $x \in H$ and $\lim ||x_n|| = ||x||$ if and only if the sequence (x_n) converges to x in norm.

4. (15 points)

Let H be a Hilbert space. Let P and Q be the orthogonal projections on the closed subspaces M and N of H respectively.

- (a) Show that P Q is an orthogonal projection if and only if $N \subseteq M$.
- (b) Show that if P Q is an orthogonal projection, then $(P Q)(H) = M \cap N^{\perp}$.

*** END OF PAPER ***